Topic 1 SEQUENCES AND SERIES

Contents:

1.1 Sequences and Summation Notation

1.2 Arithmetic Sequences

1.3 Geometric Sequences

1.4 The Binomial Theorem

SUBTOPICS:

- 1.1.1 Definition of a sequence
- 1.1.2 Recursion formula
- 1.1.3 Factorial notation
- 1.1.4 Summation notation
- 1.1.5 Properties of Sequences
- 1.2.1 Definition of an Arithmetic Sequence
- 1.2.2 *n*th term of an Arithmetic Sequence
- 1.2.3 Sum of the 1^{st} *n*th terms an Arithmetic Sequence
- 1.3.1 Definition of a Geometric Sequence
- 1.3.2 *n*th term of a Geometric Sequence
- 1.3.3 Sum of the 1^{st} *n*th terms an Geometric Sequence
- 1.3.4 Sum of an infinite geometric series
- 1.4.1 Definition of Binomial Theorem
- 1.4.2 Definition of a Binomial Coefficient
- 1.4.3 A formula or expanding Binomials: The Binomial Theorem
- 1.4.4 General term of the Binomial Expansion

1.1.1 Definition of a sequence

- A **sequence** is a function, *f* whose domain is the set of natural numbers. The terms of the sequence are the function values: *f*(1), *f*(2), *f*(3),...,*f*(*n*)
- However, the function notation f(n) is commonly written as a_n . So, the terms of the sequence are written as such $a_1, a_2, a_3, \dots, a_n$

1.1.2 Recursion formula

• A recursion formula defines the nth term of a sequence as a function that involves one or more of the terms preceding it

Find the first 4 terms of the sequence in which $a_1 = 3$ and $a_n = 2a_{n-1} + 5$, $n \ge 2$

1.1.3 Factorial notation

If *n* is a positive integer, the notation n! is the product of all positive integers from *n* down through 1

n! = n (n - 1)(n - 2)....(3)(2)(1)

0! by definition is 1

0! = 1

1) Write the first 4 terms of the sequence whose *n*th terms is $a_n = \frac{20}{(n+1)!}$

2) Evaluate each factorial expression:

a) $\frac{14!}{2!12!}$ b) $\frac{n!}{(n-1)!}$

5

1.1.4 Summation notation

The sum of the first *n* terms of a sequence is represented by the summation notation n

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + a_3 + \dots + a_n$$

where i is the index of summation, n is the upper limit of summation, and 1 is the lower limit of the summation

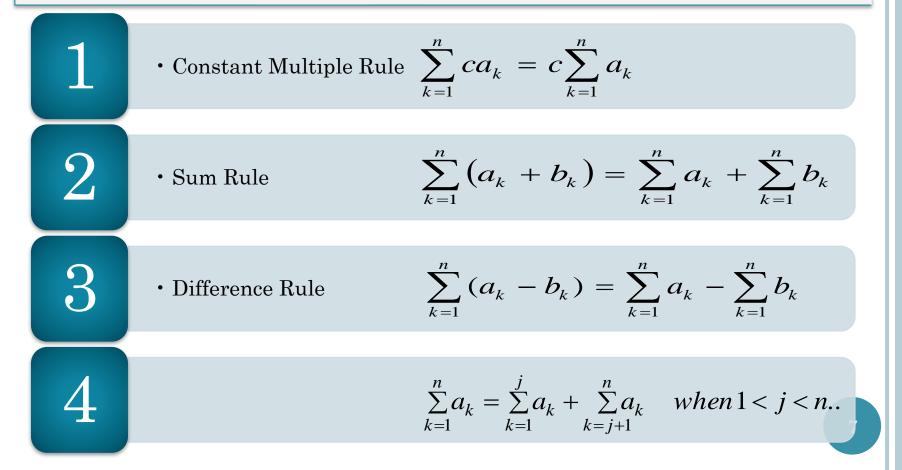
1) Expand and evaluate the sum:

a)
$$\sum_{i=1}^{6} 2i^2$$
 b) $\sum_{k=3}^{5} (2^k - 3)$ c) $\sum_{i=1}^{5} 4$

2) Express each sum using summation notation a) $1^2 + 2^2 + 3^2 + \dots + 9^2$ b) $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-1}}$

1.1.5 Properties of Sequences

If $\{a_n\}$ and $\{b_n\}$ are two sequences and c is a real number, then



Example:

1	• Constant Multiple Rule	$\sum_{i=1}^{6} 2i^2 = 2\sum_{i=1}^{6} i^2$
2	• Sum Rule	$\sum_{k=1}^{4} (k+k^3) = \sum_{k=1}^{4} k + \sum_{k=1}^{4} k^3$
3	• Difference Rule	$\sum_{k=3}^{5} (2^{k} - k) = \sum_{k=3}^{5} 2^{k} - \sum_{k=3}^{5} k$
4		$\sum_{k=1}^{8} 3a = \sum_{k=1}^{3} 3a + \sum_{k=4}^{8} 3a$

1.2 ARITHMETIC SEQUENCES

1.2.1 Definition of an Arithmetic Sequence

An arithmetic sequence is a sequence of the form $a, a+d, a+2d, a+3d, \dots, a+(n-1)d, \dots$

1.2.2 *n*th term of an Arithmetic Sequence

The number a is the first term, and d is the common difference of the sequence. The *n*th term of an arithmetic sequence is given by

 $a_n = a + (n-1)d$

Find the ninth term of the arithmetic sequence whose first term is 6 and whose common difference is -5

1.2 ARITHMETIC SEQUENCES

1.2.3 Sum of the 1^{st} *n*th terms an Arithmetic Sequence

Let $\{a_n\}$ be an arithmetic sequence with first term a and common difference d. The sum S_n of the first n terms of $\{a_n\}$ is

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
 or $S_n = \frac{n}{2} [a + a_n]$

1) Find the sum of the first 15 terms of the arithmetic sequence: 3, 6, 9, 12.....

2) An amphitheater has 50 rows of seats with 30 seats in the first rows, 32 in the second,34 in the third and so on. Find the total number of seats.

1.3 **GEOMETRIC SEQUENCES**

1.3.1 Definition of a Geometric Sequence

A geometric sequence is a sequence in which each term after the first is obtained by multiplying the preceding term by a fixed nonzero constant. The amount by which we multiply each time is called the common ratio of the sequence. A geometric sequence is a sequence of the form

 $a, ar, ar^2, ar^3, \dots ar^{n-1}, \dots r \neq 0$

1.3.2 *n*th term of a Geometric Sequence

A geometric sequence $\{a_n\}$ whose first term is *a* and common ratio is *r*, the *n*th term is determined by the formula

$$a_n = ar^{n-1}$$

Example:

Write the first six terms of the geometric sequence with first term 12 and common ratio $1/_{2}$. 11

1.3 GEOMETRIC SEQUENCES

1) Find the seventh term of the geometric sequence whose first term is 5 and whose common ratio is -3

2) Write the general term for the geometric sequence

3, 6, 12, 24, 48

Then use the formula for the general term to find the eight term

1.3 GEOMETRIC SEQUENCES

1.3.3 Sum of the 1^{st} *n*th terms an Geometric Sequence

Let $\{a_n\}$ be a geometric sequence with first term a and common ratio r. The sum S_n of the first n terms of $\{a_n\}$ is

$$S_n = a \frac{1 - r^n}{1 - r}; r \neq 0,1$$

1) Find the sum of the first nine terms of the geometric sequence:

2, -6, 18, -54

2) Find the following sum: $\sum_{i=1}^{8} 2.3^{i}$

1.3 GEOMETRIC SEQUENCES

1.3.4 Sum of an infinite geometric series

An infinite sum of the form $a + ar + ar^2 + ar^3 + ... + ar^{n-1} + ...$ with first term *a* and common ratio *r*, and is denoted by

$$S_n = \sum_{k=1}^{\infty} ar^{k-1} = \frac{a}{1-r}$$
 with $-1 < r < 2$

1) Find the sum of the geometric series $3, 2, \frac{4}{3}, \frac{8}{9}, +...$ 2) Express $0.\overline{45}$ as a fraction in lowest term.

1.4 THE BINOMIAL THEOREM

1.4.1 Definition of Binomial Theorem

Binomial Theorom is a formula for the expansion of $(a + b)^n$ for n any positive integer. (Binomial Expansions / Series)

$$(a + b)^{1} = a + b$$

$$(a + b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a + b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 2a^{1}b^{3} + b^{4}$$

1.4 THE BINOMIAL THEOREM

c) $\binom{8}{2}$

For $n \ge r$

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = {}^{n}C_{r}$$

Evaluate

a)

$$\begin{pmatrix} 6\\3 \end{pmatrix}$$
 b)

$$\begin{pmatrix} 6\\ 0 \end{pmatrix}$$

d) $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$

16

THE BINOMIAL THEOREM 1.4

1.4.3 A formula or expanding Binomials: The Binomial Theorem

For any positive integer *n*

$$(a+b)^{n} = \binom{n}{0}a^{n}b^{0} + \binom{n}{1}a^{n-1}b^{1} + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{k}a^{n-k}b^{k} + \dots + \binom{n}{n}a^{0}b^{n}$$

Expand

a) $(x+1)^4$ b) $(x-2y)^5$

1.4 THE BINOMIAL THEOREM

1.4.4 General term of a Binomial Expansion

The term containing a^r of the expansion of $(a + b)^n$ is

a) Find the term that contains x^5 in the expansion of $(2x+y)^{20}$.

 $\begin{bmatrix} n \\ r \end{bmatrix} a^{n-r}b^r$

b) Find the coefficient of x^8 in the expansion of $\left(x^2 + \frac{1}{x}\right)^{10}$.

REFERENCES

• Stewart, J., Redlin, L., & Watson, S. (2012) Precalculus: Mathematics for Calculus (6th ed,). Brooks/Cole, Cengage Learning.